Innovative tools for dietary assessment

The Whole Grain Summit June 24-26 in Portland, OR

Carol J Boushey, PhD, MPH, RD

Associate Research Professor, Epidemiology Program, University of Hawaii Cancer Center And Adjunct Professor, Nutrition Science, Purdue University

Acknowledgments

At Purdue University

<u>Department of Nutrition Science</u>

TusaRebecca Schap, PhD, MS, RD

Heather Eicher-Miller, PhD

Bethany Daughtery, MS, RD

Elisa Bastian, MS

Ashley Chambers, RD

Department of Agricultural & Biological

Engineering

Martin Okos, PhD

Shivangi Kelkar, PhD

Scott Stella

Curtin University, Perth, Western Australia

Deb Kerr, PhD

Amelia Harray

technology assisted

dietary assessment

At Purdue University

School of Electrical & Computer Engineering

Edward Delp, PhD

David Ebert, PhD

Fengqing Zhu, PhD

Nitin Khanna, PhD

Marc Bosch, PhD

Junghoon Chae, MS

Ye He, PhD

Xu (Joy) Chang, PhD

Ziad Ahmad

Yu Wang

Support for this work comes from the NIH, NCI (1U01CA130784-01); NIH, NIDDK (1R01-DK073711-01A1); NIH, NIEHS (2R01ES012459-06). TRS was an Indiana Clinical and Translational Sciences Institute TL1 Pre-doctoral Trainee supported by TL1 RR025759.

Image-Based Dietary Assessment

- Convenient & reduces burden
 - study participants
 - researchers
- Richer source of information
 - a repository of images
 - images for future research and analysis
- A tool that will connect with study participants
- Improve accuracy

Architecture of the Technology Assisted Dietary Assessment (TADA) image-based dietary assessment system

Zhu F et al. IEEE Journal of Selected Topics in Signal Processing, 2010.

Main views of the mobile food record (mFR) user interface

Image acquisition process of the mFR application

Image quality checking in the mFR application

Image captured by adolescent during a 24-hour feeding study

Feature Extraction

Food identification

- Test images: 1453
 images taken by 45
 community dwelling
 participants over 7
 days.
- Training images: 20-30 images per food class
- 42 food classes

Feature classification results

Features	Classification Accuracy			
Tentures	Top 1	Top 4		
DCD+MDSIFT	60.9%	83.3%		
DCD+MDSIFT+SCD	62.9%	85.1%		
DCD+MDSIFT+SCD +SIFT	64.5%	84.2%		
DCD+MDSIFT+SCD +SIFT+EFD	63.5%	83.4%		
DCD+MDSIFT+SCD +SIFT+EFD+GFD	62.9%	82.8%		
Contextual Dietary Information	71.4%	88.3%		

Volume Estimation

Figure 2. Weight error from images taken by 15 adolescents (11–18 years) at a breakfast meal. Ratio greater >1 is overestimated and ratio <1 is underestimated (mean and 95% CI). 2D, two dimensional portion estimation aid; MDes, multiple descriptors, e.g., cup, teaspoon. See text for further description.

Generate or Pre-Define Food Shapes

Shape	Example Food Type	Dimension Parameters	Locator	
Cylinder	Orange juice, Milk	Radius, Height		
Sphere	Apple, Orange	Radius		
Square Box	Chocaolate Cake, Brownie	Width, Length, Height, Rotation Angle		
Slice of Cone/ Slice of Sphere	Bottom Radius			
Prism	Bread, Scrambled Eggs	Area, Height		
Irregular Shape	Scale X, Scale Y, Banana, Pear Scale Z, (Rotation Angle)			

Xu C et al ICIP 2013

TADA Fiducial Marker

- TADA color fiducial marker plays an important role for dealing with the challenges involved in food classification and volume estimation from a single image
 - Geometric reference
 - Color reference
 - Image quality reference
- Real time image quality check on the mobile phone

Examples of studies using TADAsystem

- TADA Café
 - Controlled conditions
 - Men & women, 21-65 y
 - -1 to 2 meals
 - -n = 57

- Food in Focus
 - Community dwelling
 - -Men & women, 21-63 y
 - -7 days
 - -n = 45

- Connecting Health and Technology (CHAT)
 - Community dwelling
 - -Men & women, 18-30 y
 - -4 days
 - -n = 241

Review Process

Review Process

Day 0	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 8
Thu	Fri	Sat	Sun	Mon	Tues	Wed	Thu	Fri
n = 46								n = 45
User training & mobile telephone distribution	Men = 15 (33%) Women = 30 (67%) Mean age = 32 y (range: 21-63 y)							Return mobile telephone

Conclusions

- Image-based dietary assessment appears to be a promising dietary assessment method
- Improvements in technology are likely easier to pursue than changes to humans
- Images will broaden research questions due to better information about the microenvironment and temporal aspects of eating.