

Texture Modification and Flavor Protection of Whole Grain Products
Lirong Zhou, 06/25/2015, Whole Grains Summit

Lirong Zhou, 06/25/2015, Whole Grains Summit

ICL's Core End-Markets

Our Vision: to be a leading global specialty minerals company, fulfilling humanity's essential needs in agriculture, food & engineered materials

Mianjia[®] Line for Noodle Applications

TABLE 1: MIANJIA APPLICATIONS	Product	Use Level
Instant noodle (fried or air dried)	Mianjia 100 Mianjia 310 and 400	0.3-0.7% of flour 0.3-0.7% of flour
Alkaline noodle (Yakisoba, Chow mein, Egg noodle)	Mianjia 300 Mianjia 310	0.5-1.5% of flour 0.3-0.7% of flour
Udon noodle/Salt noodle	Mianjia 400	0.3-0.7% of flour
Noodle surface treatment	Phosphoric Acid Adipic Acid	To desired pH
Calcium fortification, Dough conditioning, Texture modification	Calcium Phosphates (MCP, DCP, TCP)	To desired level, texture

Whole Wheat Noodle / Pasta Challenges

- The addition of wheat bran and germ affects
 - Color
 - Darker, dull color
 - Texture
 - Rough noodle surface, gritty texture, poor gluten formation
 - Stability
 - Shorter shelf life due to high unsaturated fat content

Pasta Formulation

Ingredients Percentage (%)

Regular

Semolina 100%

Mianjia[®] 0.1%~0.6%

Water 28.5%

Whole wheat

Hard white whole wheat flour 51%

Semolina 49%

Mianjia[®] 0.1%~0.6%

Egg white 1.5%~2%

Water 32.5%

Cooked Whole Wheat Pasta Texture

Modification of Flour Pasting Properties by Phosphates

Reference: Niu, M. et al., 2014. Effects of Inorganic Phosphates on the Thermodynamic, Pasting and Asian Noodle-Making Properties of Whole Wheat Flour. Cereal Chem. 91(1):1-7.

Color Improvement in Whole Wheat Noodle with Phosphates

Samplez	L^*	a [‡]	b^*
SGN	$85.34 \pm 0.23d$	$0.33 \pm 0.01a$	11.22 ± 0.12a
WWN	$76.51 \pm 0.19a$	$3.31 \pm 0.05b$	$16.50 \pm 0.16b$
DSP	77.67 ± 0.28 bc	$3.29 \pm 0.08b$	$16.39 \pm 0.17b$
TSP	$78.58 \pm 0.31c$	$3.13 \pm 0.09b$	$16.05 \pm 0.11b$
STPP	77.68 ± 0.37 bc	3.24 ± 0.07 b	$16.38 \pm 0.18b$
SHMP	$77.02 \pm 0.41ab$	3.29 ± 0.06 b	$16.45 \pm 0.21b$

Reference: Niu, M. et al., 2014. Effects of Inorganic Phosphates on the Thermodynamic, Pasting and Asian Noodle-Making Properties of Whole Wheat Flour . Cereal Chem. 91(1):1-7.

Instant Noodle with Whole Wheat Flour

Instant Noodle with Whole Wheat Flour

Cooked Whole Wheat Noodle Texture with Phosphates

Sample	Hardness (g)	Springiness	Cohesiveness	Resilience
SGN WWN DSP TSP STPP SHMP	1,859.38 ± 25.67a 2,513.28 ± 30.97c 2,308.28 ± 35.45b 2,309.57 ± 26.76b 2,249.54 ± 35.29b 2,289.02 ± 32.19b	0.763 ± 0.018 ns 0.712 ± 0.013 0.726 ± 0.010 0.730 ± 0.009 0.741 ± 0.017 0.736 ± 0.015	0.451 ± 0.017c 0.393 ± 0.010a 0.420 ± 0.015abc 0.413 ± 0.016ab 0.434 ± 0.008bc 0.418 ± 0.018abc	0.127 ± 0.008 0.127 ± 0.007

11

Reference: Niu, M. et al., 2014. Effects of Inorganic Phosphates on the Thermodynamic, Pasting and Asian Noodle-Making Properties of Whole Wheat Flour. Cereal Chem. 91(1):1-7.

What is Licresse™?

 Licresse™ is a natural food ingredient extracted from the root of the licorice plant (Glycyrrhiza glabra).

It is naturally high in antioxidant phenolic compounds

 Licresse[™] is minimally processed as described in 21 CFR 184.1408 (a)(1). The root is ground, steeped and filtered. The residue is spray dried.

Licresse™ Regulatory - US

- Regulatory
 - Licresse[™] can be labeled as licorice, licorice extract, natural flavoring
 - Affirmed as GRAS and approved under 21 CFR 184.1408
- Licresse[™] is a minimally processed extract from the licorice plant
- Licresse[™] is Kosher
- BRC, ISO 9001, GMP, HACCP
- Contains no allergens

Licresse™ Functionality

OH- Scavenging

(1000 ug/mL for Licresse TM B , 500 ug/mL for others)

Licresse™ in Whole Wheat Biscuit

	Bakers %
Whole wheat flour	100
Shortening	25
NFDM	7
Sugar	3
Salt	2
Soda	3
Stabil-9	3.23
Water	65

Licresse™ in Whole Wheat Biscuit

Oxidation Stability by Rancimat™ (Treatment added at 1000 ppm of dry biscuit mix, test run @110 °C)

Induction time (hours) of whole wheat biscuit

Licresse™ in Whole Wheat Bread

Licresse for Seed Stability

