An Insight into On-Trend Applications of Whole-Grain: Frozen Dough Bread and Noodles

Suyong Lee

Department of Food Science & Technology Sejong University Seoul, Korea

Whole grain

- ✓ Whole grains are cereal grains which are composed of the intact, ground, cracked or flaked caryopsis.
- ✓ They contain cereal germ, endosperm, and bran, in contrast to refined grains which retain only endosperm.
- ✓ US-FDA approved a whole-grain health claim for the foods containing 51 percent or more whole grains by weight.

Processing performance of whole-grain flour

- ✓ There is a lack of fundamental processing knowledge on whole-grain flour.
 → The application of whole-grain flour is still limited.
- ✓ Whole-grain foods has a tendency to have undesirable quality attributes, compared to refined flour products.

Compared to refined wheat flour

Why?

1.

Less gluten and more fibers (dough stability, extensibility etc.) 2.

worse sensory qualities (odor, color, texture, etc.) Poor processing performance.

⇒ Therefore, there is a need to effectively improve the processing performance of whole-grain flour.

Research objectives

→ Physicochemical characterization of refined white and whole-grain flours

- → Application of whole-grain flour to frozen dough bread
- → Development of whole-grain noodles (extruded and instant fried noodles)

Improvement

→ Establishment of experimental procedures to improve the quality attributes of whole-grain products

Evaluation of whole-grain flour as a functional ingredient in a processed food system

Chemical composition of whole-grain flour

Pasting profile of whole-grain flour

200

400

Time (sec)

-White rice —White and brown rice mixture (1:1) —Brown rice —Temp.

600

800

Mixing properties of whole-grain dough

		Control	50% Whole	100% Whole			
	C1	1.09±0.01a	1.10±0.03a	1.10±0.00a			
	C2	0.51±0.01a	0.46±0.01b	0.44±0.00b			
Torque (Nm)	C3	1.84±0.01a	1.78±0.01b	1.74±0.01c			
	C4	1.97±0.00a	1.89±0.03b	1.88±0.03b			
	C5	3.10±0.10a	3.08±0.03a	3.07±0.05a			
Water absorption (%)		51.40±0.17c	52.30±0.17b	52.90±0.00a			
Dough stability (min)		9.84 ±0.03a	9.20±0.18b	8.74±0.09c			
Development time (min)		7.94±0.91a	5.84±0.78b	5.69±0.43b			

Rheological property of whole-grain dough

√ Whole-grain flour reduced the elastic property of dough (extensibility ↓, G'↓)
♪

Frozen dough bread

The segment of 'Bake off' products that use frozen dough is one of the fastest growing areas at the industrial level.

<Straight-dough method (AACC 10-10)>

	Flour	Shortening	Salt	Sugar	Yeast	Water	Ascorbic acid
Flour basis (%)	300.0	9.0	4.5	18.0	3.0	182.47	200ppm

Computed Tomography

✓ 2D cross-sectional images of white and whole-grain bread

<Wheat bread>

• Porosity (%) =

<Whole wheat bread>

Volume of void space

Total volume of material

Loaf volume and texture of frozen dough bread

√ The use of whole-grain flour produced bread with low loaf volume and firm texture.

Quality improvement of whole-grain bread

G4-amylase

- ✓ A novel enzyme used in this study is commercially called Optimalt 4G. (EC3.2.1.60; glucan 1,4-alpha-maltotetraohydrolase)
- ✓ Optimalt 4G hydrolyzes alpha-1,4 glucosidic bonds of conventional liquefied starch, producing high concentrations of maltotetraose.

Optimum pH : 5.0 - 5.5

Optimum temperature : 61 - 65 ℃

Maltooligosaccharide profiles of bread

Improvement of bread volume

[√] The volume of bread was improved by G4-amylase, compared to other commercial improvers

Anti-retrogradation mechanisms

Noodles

Whole-grain flour

- Chemical compositions
- Pasting property (Starch pasting cell)
- Thermo-mechanical property (Mixolab)
- Rheological property (Rheometer)

Extruded noodles (Brown rice flour)

Instant fried noodles (Whole wheat flour)

- Antioxidant characteristics (DPPH, ABTS, and FRAP assays)
- Expansion ratio and breaking stress (Snapping test)
- Tensile property (Kieffer dough and gluten extensibility rig)
- Cooking loss
- Peroxide value
- In-vitro stimulated digestion (glucose release and pGI)

Application of brown flour to extruded noodles

Application of brown flour to extruded noodles

< Expansion ratio >

< Cooking loss >

< Tensile property >

Quality improvement of extruded noodles

Veriables							Coded level			
Variables		-1	0			1	ΔΧ			
Moisture content of noodle dough Barrel temperature Drying temperature		30	35				40 90			
		70	80							
			X_3		20	40	60		20	
Experimental	oded variab	ples Process variables		es	Cooking loss	T 1110	Tensile property			
	X ₁	X ₂	X ₃	X ₁	X ₂	X ₃	(%)	Turbidity	Rmax (N)	E (mm)
1	-1	-1	0	30	70	40	45.42±3.96	1.25±0.07	1.52±0.17	11.56±1.0
2	1	-1	0	40	70	40	43.58±3.10	1.38±0.07	0.13±0.02	8.40±1.25
3	-1	1	0	30	90	40	14.63±1.62	0.34±0.05	10.50±0.85	18.87±4.0
4	1	1	0	40	90	40	27.64±1.65	0.68±0.05	2.31±0.29	23.86±3.8
5	-1	0	-1	30	80	20	45.38±7.35	1.05±0.13	0.19±0.08	13.96±4.5
6	1	0	-1	40	80	20	31.43±2.49	0.86±0.07	0.58±0.09	23.83±3.2
7	-1	0	1	30	80	60	44.18±4.02	1.05±0.07	1.88±0.33	15.39±2.0
8	0	0	1	35	80	60	41.35±4.85	1.05±0.08	1.25±0.11	20.88±2.0
9	0	-1	-1	35	70	20	49.07±7.26	1.36±0.11	0.19±0.04	9.56±1.13
10	0	1	-1	35	90	20	18.84±1.94	0.44±0.04	3.82±0.28	34.08±2.7
11	0	-1	1	35	70	60	51.78±8.94	1.44±0.14	0.22±0.07	9.26±2.26
12	0	1	1	35	90	60	20.55±1.70	0.45±0.05	5.01±0.62	7.65±1.95
13	0	0	0	35	80	40	37.34±6.10	1.00±0.07	0.76±0.13	24.75±2.2
14	0	0	0	35	80	40	37.56±4.80	0.97±0.09	0.80±0.10	25.68±1.9
15	0	0	0	35	80	40	34.96±4.25	0.95±0.11	0.71±0.05	26.07±4.83

[√] The quality attributes of brown rice noodles were distinctly enhanced by controlling extrusion parameters. ▶

Application of whole wheat flour to instant fried noodles

 $\sqrt{\ }$ The fried noodles prepared with the whole-grain flour had a less porous structure, which contributed to reduced oil uptake during frying.

In-vitro starch digestibility of instant fried noodles

■ Rapidly digestible starch ■ Slowly digestible starch ■ Resistant starch ■ pGI

The use of whole-grain wheat flour was effective in suppressing the hydrolysis of starch in the noodles. lowering the predicted glycemic index.

