TitleUrinary α-carboxyethyl hydroxychroman can be used as a predictor of α-tocopherol adequacy, as demonstrated in the Energetics Study.
Publication TypeJournal Article
Year of Publication2012
AuthorsLebold, KM, Ang, A, Traber, M, Arab, L
JournalThe American journal of clinical nutrition
Date Published2012 Oct
KeywordsYoung Adult

BACKGROUND: Other than the in vitro erythrocyte hemolysis test, no valid biomarkers of vitamin E status currently exist. OBJECTIVE: We hypothesized that the urinary vitamin E metabolite α-carboxyethyl hydroxychroman (α-CEHC) could serve as a biomarker. DESIGN: The relations between urinary α-CEHC, plasma α-tocopherol, and vitamin E intakes were assessed by using a previously validated multipass, Web-based, 24-h self-administered dietary recall, and we concurrently collected plasma and 24-h urine samples from 233 participants of both sexes. RESULTS: Median vitamin E intakes were 9.7 mg α-tocopherol/d. Intakes were correlated with plasma α-tocopherol (R = 0.40, P < 0.001) and urinary α-CEHC (R = 0.42, P < 0.001); these correlations were essentially unchanged after multivariate adjustments. On the basis of multiple regression analysis, urinary α-CEHC excretion increased by ~0.086 μmol/g creatinine (95% CI: 0.047, 0.125) for every 1-mg (2.3-μmol) increase in dietary α-tocopherol. Urinary α-CEHC excretion remained at a plateau (median: 1.39 μmol/g creatinine) until dietary intakes of α-tocopherol exceeded 9 mg α-tocopherol/d. The inflection point at which vitamin E metabolism increased was estimated to be at an intake of 12.8 mg α-tocopherol/d. Daily excretion of >1.39 μmol α-CEHC/g creatinine is associated with a greater than adequate α-tocopherol status, as evidenced by increased vitamin E metabolism and excretion. CONCLUSION: Thus, urinary α-CEHC is a valid biomarker of α-tocopherol status that can be used to set a value for the Estimated Adequate Requirement of vitamin E.