Title | In situ apatite forming injectable hydrogel. |
Publication Type | Journal Article |
Year of Publication | 2007 |
Authors | Ho, E, Lowman, A, Marcolongo, M |
Journal | Journal of biomedical materials research. Part A |
Volume | 83 |
Issue | 1 |
Pagination | 249-56 |
Date Published | 2007 Oct |
Keywords | X-Ray Diffraction |
Abstract | Injectable polymers are attractive materials for tissue augmentation or replacement. Thermosensitive hydrogels, especially poly(N-isopropylacryamide), have been investigated for these applications to exploit the lower critical solution temperature (LCST) which falls between room and body temperatures. Some practical limitations to the material are the load-bearing capabilities and the ability to bond to the host tissue. In this work, we evaluated a novel, injectable apatite-forming material system: poly(N-isopropylacryamide)-co-poly(ethyleneglycol) dimethacrylate, with the addition of tri-methacryloxypropyltrimethoxysilane (MPS). We have previously reported that MPS concentration permits the material system to be tuned to different compressive moduli ranging from 50-700 kPa without altering the LCST of the material. Here, we explore the apatite formation of this material system in protein-free and protein-containing SBF. The MPS-containing hydrogel system exhibited apatite formation throughout the gel thickness. The apatite formation was inhibited by the presence of proteins. This mechanism is likely controlled by the silanol groups (Si-OH) in MPS, which provided attachment sites for calcium and initiated mineral dissolution from the simulated biological environments. The challenge of this material system is to balance the network-forming and modulus-enhancing MPS while maintaining an injectable hydrogel for potential tissue regeneration. |