TitleA national study of the association between traffic-related air pollution and adverse pregnancy outcomes in Canada, 1999-2008.
Publication TypeJournal Article
Year of Publication2016
AuthorsStieb, DM, Chen, L, Hystad, P, Beckerman, BS, Jerrett, M, Tjepkema, M, Crouse, DL, D Omariba, W, Peters, PA, van Donkelaar, A, Martin, RV, Burnett, RT, Liu, S, Smith-Doiron, M, Dugandzic, RM
JournalEnvironmental research
Date Published2016 May 5

Numerous studies have examined the association of air pollution with preterm birth and birth weight outcomes. Traffic-related air pollution has also increasingly been identified as an important contributor to adverse health effects of air pollution. We employed a national nitrogen dioxide (NO2) exposure model to examine the association between NO2 and pregnancy outcomes in Canada between 1999 and 2008. National models for NO2 (and particulate matter of median aerodynamic diameter <2.5µm (PM2.5) as a covariate) were developed using ground-based monitoring data, estimates from remote-sensing, land use variables and, for NO2, deterministic gradients relative to road traffic sources. Generalized estimating equations were used to examine associations with preterm birth, term low birth weight (LBW), small for gestational age (SGA) and term birth weight, adjusting for covariates including infant sex, gestational age, maternal age and marital status, parity, urban/rural place of residence, maternal place of birth, season, year of birth and neighbourhood socioeconomic status and per cent visible minority. Associations were reduced considerably after adjustment for individual covariates and neighbourhood per cent visible minority, but remained significant for SGA (odds ratio 1.04, 95%CI 1.02-1.06 per 20ppb NO2) and term birth weight (16.2g reduction, 95% CI 13.6-18.8g per 20ppb NO2). Associations with NO2 were of greater magnitude in a sensitivity analysis using monthly monitoring data, and among births to mothers born in Canada, and in neighbourhoods with higher incomes and a lower proportion of visible minorities. In two pollutant models, associations with NO2 were less sensitive to adjustment for PM2.5 than vice versa, and there was consistent evidence of a dose-response relationship for NO2 but not PM2.5. In this study of approximately 2.5 million Canadian births between 1999 and 2008, we found significant associations of NO2 with SGA and term birth weight which remained significant after adjustment for PM2.5, suggesting that traffic may be a particularly important source with respect to the role of air pollution as a risk factor for adverse pregnancy outcomes.