TitleEffect of antioxidants on histamine receptor activation and sustained postexercise vasodilatation in humans.
Publication TypeJournal Article
Year of Publication2015
AuthorsRomero, SA, Ely, MR, Sieck, DC, Luttrell, MJ, Buck, TM, Kono, JM, Branscum, AJ, Halliwill, JR
JournalExp Physiol
Volume100
Issue4
Pagination435-49
Date Published04/2015
ISSN1469-445X
KeywordsAntioxidants, Ascorbic Acid, Exercise, Female, Histamine Agonists, Humans, Male, Muscle, Skeletal, Oxidative Stress, Physical Endurance, Receptors, Histamine H1, Receptors, Histamine H2, Up-Regulation, Vasodilation, Young Adult
Abstract
 

NEW FINDINGS: What is the central question of this study? Is exercise-induced oxidative stress the upstream exercise-related signalling mechanism that leads to sustained postexercise vasodilatation via activation of H1 and H2 histamine receptors? What is the main finding and its importance? Systemic administration of the antioxidant ascorbate inhibits sustained postexercise vasodilatation to the same extent as seen previously with H1 and H2 histamine receptor blockade following small muscle-mass exercise. However, ascorbate has a unique ability to catalyse the degradation of histamine. We also found that systemic infusion of the antioxidant N-acetylcysteine had no effect on sustained postexercise vasodilatation, suggesting that exercise-induced oxidative stress does not contribute to sustained postexercise vasodilatation. An acute bout of aerobic exercise elicits a sustained postexercise vasodilatation that is mediated by histamine H1 and H2 receptor activation. However, the upstream signalling pathway that leads to postexercise histamine receptor activation is unknown. We tested the hypothesis that the potent antioxidant ascorbate would inhibit this histaminergic vasodilatation following exercise. Subjects performed 1 h of unilateral dynamic knee extension at 60% of peak power in three conditions: (i) control; (ii) i.v. ascorbate infusion; and (iii) ascorbate infusion plus oral H1 /H2 histamine receptor blockade. Femoral artery blood flow was measured (using Doppler ultrasound) before exercise and for 2 h postexercise. Femoral vascular conductance was calculated as flow/pressure. Postexercise vascular conductance was greater for control conditions (3.4 ± 0.1 ml min(-1) mmHg(-1) ) compared with ascorbate (2.7 ± 0.1 ml min(-1) mmHg(-1) ; P < 0.05) and ascorbate plus H1 /H2 blockade (2.8 ± 0.1 ml min(-1) mmHg(-1) ; P < 0.05), which did not differ from one another (P = 0.9). Given that ascorbate may catalyse the degradation of histamine in vivo, we conducted a follow-up study, in which subjects performed exercise in two conditions: (i) control; and (ii) i.v. N-acetylcysteine infusion. Postexercise vascular conductance was similar for control (4.0 ± 0.1 ml min(-1) mmHg(-1) ) and N-acetylcysteine conditions (4.0 ± 0.1 ml min(-1) mmHg(-1) ; P = 0.8). Thus, the results in the initial study were due to the degradation of histamine in skeletal muscle by ascorbate, because the histaminergic vasodilatation was unaffected by N-acetylcysteine. Overall, exercise-induced oxidative stress does not appear to contribute to sustained postexercise vasodilatation.

DOI10.1113/EP085030
Alternate JournalExp. Physiol.
PubMed ID25664905
PubMed Central IDPMC4533997
Grant ListR01 HL115027 / HL / NHLBI NIH HHS / United States
HL115027 / HL / NHLBI NIH HHS / United States