TitleDietary fat, genes, and human health.
Publication TypeJournal Article
Year of Publication1997
AuthorsJump, DB, Clarke, SD, Thelen, A, Liimatta, M, Ren, B, Badin, MV
JournalAdv Exp Med Biol
Date Published1997
KeywordsAnimals, Dietary Fats, Fatty Acids, Unsaturated, Gene Expression Regulation, Health, Humans, Liver

These studies show that a macronutrient like dietary fat plays an important role in gene expression. In the cases presented here, dietary fat regulates gene expression leading to changes in carbohydrate and lipid metabolism. The interesting outcome of these studies is the finding that the molecular targets for dietary fat action did not converge with the principal targets for hormonal regulation of gene transcription, like hormone receptors. Instead, PUFA-RF targets elements that play key ancillary roles in gene transcription. This is important because it shows how PUFA can interfere with hormone regulation of a specific gene without having generalized effect on overall hormonal control, i.e. PUFA effects are promoter-specific. How PUFA-RF interferes with gene transcription will require the isolation and characterization of PUFA-RF along with the tissue-specific factors targeted by PUFA-RF. A different story emerges when fatty acids activate PPAR. Based on the studies presented here and elsewhere, long chain-highly unsaturated fatty acids (like 20:5,n-3 and 22:6, n-3) or high levels of fat activate PPAR. PPAR directly activates genes like AOX, but also inhibits transcription of genes like S14, FAS, apolipoprotein CIII, transferrin. For S14, the mechanism of inhibition involves sequestration of RXR, a critical factor for T3 receptor binding to DNA. Thus, PPAR can have generalized effects on T3 action or on other nuclear receptors, like vit. D (VDR) and retinoic acid (RAR) receptors, that require RXR for action. For apolipoprotein CIII and transferrin, PPAR/RXR heterodimers compete for HNF-4 binding sites (DR + 1). In addition to HNF-4, COUP-TF, ARP-1 and RXR all bind the DR + 1 type motif. These factors are important for tissue-specific regulation of gene transcription. PPAR can potentially interfere with the transcription of multiple genes through disruption of nuclear receptor signaling leading to changes in phenotype. Clearly, more studies are required to assess the role PPAR plays in the fatty acid regulation of gene transcription and its contribution to chronic disease. Finally, it is clear that dietary fat has the potential to affect gene expression through multiple pathways. Depending on the gene examined, PUFA might augment or abrogate gene transcription which leads to specific phenotypic changes altering metabolism, differentiation or cell growth. These effects can be beneficial to the organism, such as the n-3 PUFA-mediated suppression of serum triglycerides or detrimental, like the saturated and n-6 PUFA-mediated promotion of insulin resistance. How such effects contribute to the onset or progression of specific neoplasia is unclear. However, studies in metabolism might provide important clues for this connection.

Alternate JournalAdv. Exp. Med. Biol.
PubMed ID9361824
Grant ListR01 DK043220 / DK / NIDDK NIH HHS / United States
DK43220 / DK / NIDDK NIH HHS / United States